陳銘洲
職稱 教授
姓名 陳銘洲
電子郵件
Phone: (03) 4227151 ext. 65943
專業領域 觸媒 、高分子、有機材料化學
學歷
國家 學校名稱 系所 學位
臺灣 彰化師範大學 化學系 學士
臺灣 臺灣大學 化學系 碩士
美國 加州大學聖地牙哥分校 化學系 博士
經歷
服務機關名稱 單位 職務 期間
國立中央大學 化學學系 主任 2018.08 ~ 2021.07
中央大學 化學系 教授 2015.08 ~ 迄今
中央大學 化學系 副教授 2011.01 ~ 2015.01
中央大學 化學系 助理教授 2004.01 ~ 2011.01
美國西北大學 博士後研究 1999.01 ~ 2004.01
美國加州大學柏克萊分校 博士後研究 1998.01 ~ 1999.01
榮譽
類別 年度 獎項名稱 頒獎單位
校內榮譽 2013 102年度中央大學服務學習傑出導師 中央大學
校內榮譽 2011 100年度中央大學優良導師 中央大學
個人研究
本實驗室這幾年以開發電性良好之p-型和n-型有機半導體材料為主要目標,2017發表一 可溶性p-型材料噻吩材料其元件利用溶液製程具1.7 cm 2 V -1 s -1之高電性效能 (Adv. Mater. 2017),之後開發出可溶性材料具>2.63.5 cm 2 V -1 s -1 (分別於Chem. Mater.2020 ACS Nano 2021)。近期發表一可溶性噻吩材料具>4.0 cm 2 V -1 s -1之高電性效能 (Adv. Funct. Mater. 2022),這幾個可溶性材料皆為當年度臺灣所開發之p-型小分子材料之最高溶液製程電性記錄。

N-型有機半導體材料開發方面,2017首度發表一可溶性併環噻吩材料元件利用溶液製程 0.45 cm 2 V -1 s -1之效能 (Adv. Funct. Mater. 2017),之後開發兩可溶性n-型材料利用溶液製程具0.772.54 cm 2 V -1 s -1之高電性,分別於ACS AMI 2020 &Adv. Science 2021發表,於台灣本土開發之可溶性小分子n-OTFT材料中首屈一指。目前已將這一些小分子應用於鉛鈣鈦礦太陽能電池,元件效能具~23.4% PCE,有機會為全台最高Pb-PSC之電性紀錄(整稿中)
利用本實驗室所開發之兩個高電性之 p 型與 n 型可溶性材料,以溶液製程製備之 ambipolar 元件,p-型與 n-型電性分別可達 0.83 0.37 cm 2 V -1 s -1,目前為全球最高小分子 以溶液製程所得之 ambipoar OTFT 電性紀錄。

本實驗室開發之有機共軛單元,亦可應用於 DSSC/OPV/PSC 等有機光電材料的開發。本實驗之前所開發之兩有機染敏材料(DSSC)之光電轉換效能達10.1% (JACS 2015) 11.2%(JMCA 2017)-皆為當時全台最高光電轉換效能記錄之有機染敏材料。近期,已開發有機染敏作為有機電洞傳輸層材料應用於錫鈣鈦礦太陽能電池(Sn-PSC),元件效能具~8.3% PCE(發表於 Adv. Fucnt. Mater. 2023)。本實驗室之前已開發有機電洞傳輸層材料(HTM)材料應用於 Sn-PSC,兩材料具 7.23% 7.59% PCE 分別於 JACS 2018 Adv. Funct.Mater. 2019 發表。目前已開發高分子有機電洞傳輸層材料(HTM) Sn-PSC ~7.6%之效能(Adv. Mater.2023),近期剛 發表一新高分子 HTM 8.6% PCE,為目前全球 Sn-PSC 之最高效能之高分子 HTM (Adv. Energy Mater. 2023)

本實驗室亦開發 HTM 材料應用於 Pb-PSC,兩材料具~19.3% PCE Small 2021 Chem. Mater.2021 發表。2022,兩材料具~20.2% PCE 分別於 ACS Energy Letters ACSAMI 發表。目前本實驗所開發之一新材料具~21.7% PCE 已發表於 2023

本實驗室所開發之兩系列新非富勒烯(NFA)材料應用於 OPV 元件之電性可高達~16.2% - 16.6% PCE。所開發之 NFA 材料應用於 Pb-PSC ~21.4%PCE JMCA 2022 發表。近期一新 NFA 材料應用於 Pb-PSC 已具~22.2%PCE(投稿於 ACS AMI)

陳明洲老師研究

Figure 1. 陳銘洲實驗室所發表之較具代表性文章整理.
 
a. J. Mater. Chem. 2008, 1029. b. Chem. Commun. 2009, 1846. c. Org. Electronics 2010, 801. d. Chem. Mater. 2010, 5031. e. Org. Electronics 2010, 1363. f. Adv. Funct. Mater. 2012, 48. g. ACS Appl. Mater. & Inter. 2012, 4, 6992. h. Chemistry - A Euro. J. 2013, 3721. i. Adv. Funct. Mater. 2013, 3850. j. Adv. Funct. Mater. 2014, 2057. k. J. Mater. Chem. C. 2014, 7599. l. J. Mater. Chem. C. 2014, 8892. m. Adv. Elect. Mater. 2015, 1500098. n. J. Am. Chem. Soc. 2015, 4414. o. J. Mater. Chem. C. 2015, 8932. p. ACS Appl. Mater. & Inter. 2016, 15267. q. J. Mater. Chem. A. 2017, 12310. r. Chem. Commun. 2017, 5898. s. Adv. Funct. Mater. 2017, 1606761. t. Adv. Mater. 2017, 1702414. u. J. Am. Chem. Soc. 2018, 388. v. Adv. Funct. Mater. 2018, 1801025. w. Adv. Funct. Mater. 2019, 1905393. x. Chem. Mater. 2020, 1422. y. ACS Appl. Mater. & Inter. 2020, 15071. z. ACS Appl. Mater. & Inter. 2020, 25081. Other: Adv. Science 2021, 2002930; ACS Nano 2021, 15, 727; Small 2021, 2100783; Chem. Mater. 2021, 33, 3286; ACS Appl. Mater. & Inter. 2021, 13, 31898; Adv. Electron. Mater. 2021, 2100648; ACS Appl. Energy Mater. 2022, 4149; Adv. Opt. Mater. 2022, 2102650; Adv. Funct. Mater. 2022, 1801025; ACS Energy Letters 2022, 7, 2118; JMCA 2022 10 11254; ACS Appl. Mater. Inter. 2022, 14, 22053; Chem. Eng. J. 2023 141366; CRPS 2023 4 101312; Adv. Mater. 2023, 35, 2300681; Adv. Funct. Mater. 2023, 2213939. Adv. Energy Mater. 2023, 2302047.




這是一張圖片
這是一張圖片
這是一張圖片
這是一張圖片
陳銘洲研究6 

這是一張圖片
這是一張圖片
 
底下整理本實驗室這幾年所發表文章內最具代表性材料之分子結構及其元件電性之表現。
 
這是一張圖片
這是一張圖片
這是一張圖片
這是一張圖片
陳銘洲研究12


 
This is an image

This is an image

This is an image

This is an image

This is an image
期刊論文
  1. S. Vegiraju, B.-C. Chang, L.-H. Li, D.-Y. Huang, K.-Y. Wu, P. Priyanka, W.-C. Chang, Y.-Y. Lai, B.-C. Yu, C.-L. Wang, C.-L. Liu, Ming-Chou Chen, A. Facchetti.”Intramolecular Locked Dithioalkylbithiophene Based Semiconductors for High Performance Organic Field Effect Transistors.”Adv. Mater. 2017, 1702414 (CTI: 31)
  2. S. Vegiraju, G.-Y. He, C. Kim, P. Priyanka, Y.-J. Chiu, C.-W. Liu, C.-Y. Huang, J.-S. Ni, Y.-W. Wu, Z. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, Ming-Chou Chen, and A. Facchetti.”Solution-Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambient-Stable n-Channel Organic Field Effect Transistors.”Adv. Funct. Mater. 2017, 1606761 (CTI: 22)
  3. Y. Ezhumalai, B. Lee, M.-S. Fan, B. Harutyunyan, K. Prabakaran, C.-P. Lee, S. H. Chang, J.-S. Ni, S. Vegiraju, P. Priyanka, Y.-W. Wu, C.-W. Liu, S. Yau, J. T. Lin, C.-G. Wu, M. J. Bedzyk, R.P. H. Chang, Ming-Chou Chen, K.-C. Ho , T. J. Marks.”Metal-free branched alkyl tetrathienoacene (TTAR) based sensitizers for high-performance dyesensitized solar cells.”J. Mater. Chem. A 2017, 12310 (CTI: 46)
  4. S. Vegiraju, D.-Y. Huang, P. Priyanka, Y.-S. Li, X.-L. Luo, S.-H. Hong, J.-S. Ni, S.-H. Tung, C.-L. Wang, W.-C. Lien, S. L. Yau, C.-L. Liu , Ming-Chou Chen.”High Performance Solution-processable Tetrathienoacene (TTAR) based Small Molecules for Organic Field Effect Transistors (OFETs).”Chem. Commun. 2017, 5898 (CTI: 24)
  5. B.-Y. Jiang, S. Vegiraju, A. S.-T. Chiang, Ming-Chou Chen, C.-L. Liu.”Low-voltage-driven organic phototransistors based on a solution-processed organic semiconductor channel and high k hybrid gate dielectric.”J. Mater. Chem. C 2017, 5, 9838. (CTI: 6)
  6. N. C. Mamillapalli, S. Vegiraju, P. Priyanka, C.-Y. Lin, X.-L. Luo, H.-C. Tsai, S.-H. Hong, J.-S. Ni, W.-C. Lien, G. Kwon, S. Yau , C. Kim , C.-L. Liu , Ming-Chou Chen.”Solution-Processable End-functionalized Tetrathienoacene Semiconductors: Synthesis, Characterization and Organic Field Effect Transistors Applications.”Dyes and Pigments 2017, 145, 584. (CTI: 12) 
  7. W. Ke, P. Priyanka, S. Vegiraju, C. C. Stoumpos, I. Spanopoulos, C. M. M. Soe, T. J. Marks, Ming-Chou Chen, M. G. Kanatzidis.”Dopant-Free Tetrakis-triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells.”J. Am. Chem. Soc. 2018, 140, 388. (CTI: 123)
  8. S. Vegiraju, C.-Y. Lin, P. Priyanka, D.-Y. Huang, X.-L. Luo, H.-C. Tsai, S.-H. Hong, C.-J. Yeh, W.-C. Lien, C.-L. Wang, S.-H. Tung, C.-L.Liu, Ming-Chou Chen, A. Facchetti.”Solution-Processed High-Performance Tetrathienothiophene Based Small Molecular Blends for Ambipolar Charge Transport.”Adv. Funct. Mater. 2018, 1801025. (CTI:14)
  9. S. Vegiraju, C.-Y. Lin, P. Priyanka, D.-Y. Huang, X.-L. Luo, H.-C. Tsai, S.-H. Hong, C.-J. Yeh, W.-C. Lien, C.-L. Wang, S.-H. Tung, C.-L.Liu, Ming-Chou Chen, A. Facchetti.”Solution-Processed High-Performance Tetrathienothiophene Based Small Molecular Blends for Ambipolar Charge Transport.”Adv. Funct. Mater. 2018, 1801025. (CTI:14)
  10. S. Vegiraju, W. Ke, P. Priyanka, N. J-S, W. Y-C, S. Ioannis, Y. S-L, T.J. Marks , Ming-Chou Chen, M. G. Kanatzidis.“Benzodithiophene Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells.”Adv. Funct. Mater. 2019, 1905393 (CTI: 31)
  11. S. Vegiraju, X.-L, Luo, L.-H. Li, S. N. Afraj, C. Lee, D. Zheng, H.-C. Hsieh,C.-C. Lin, S.-H. Hong, H.-C. Tsai, G.-H. Lee, S.-H. Tung, C.-L. Liu, Ming-Chou Chen, A. Facchetti.”Solution processable pseudo n-thienoacenes via intramolecular S···S lock for high performance organic field effect transistors.”Chem. Mater. 2020, 32(4), 1422-1429. (CTI: 21)
  12. Y. Ezhumalai, F.-S. Lin, M.-S. Fan, K. Prabakaran, J.-S. Ni, Y.-C. Wu, G.-H. Lee, Ming-Chou Chen,  K.-C. Ho.”Thioalkyl-Functionalized Bithiophene (SBT)-Based Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells.”ACS Applied Materials & Interfaces 2020, 12, 15071 (CTI: 14)
  13. S. Vegiraju, A. A. Amelenan Torimtubun, P.-S. Lin, H.-C. Tsai, W.-C. Lien, C.-S. Chen, G.-Y. He, C.-Y. Lin, D. Zheng, Y.-F. Huang, Y.-C. Wu, S.-L. Yau, G.-H. Lee, S.-H. Tung, C.-L. Wang, C.-L. Liu, Ming-Chou Chen, A. Facchetti.”Solution-Processable Quinoidal Dithioalkylterthiophene-Based Small Molecules Pseudo-Pentathienoacenes via an Intramolecular S···S Lock for High-Performance n-Type Organic Field-Effect Transistors.”ACS Applied Materials & Interfaces 2020, 12, 25081 (CTI: 15)
  14. F.-S. Lin, P. Priyanka, M.-S. Fan, S. Vegiraju, J.-S. Ni, Y.-C. Wu, Y.-H. Li, G.-H. Lee,Y. Ezhumalai, R.-J. Jeng, Ming-Chou Chen, K.-C. Ho.”Metal-free efficient dye-sensitized solar cells based on thioalkylated bithiophenyl organic dyes.” J. Mater. Chem. C 2020, 8, 15322 (CTI: 11)
  15. V. Joseph, C.-H. Yu, C.-C. Lin, W.-C. Lien, H.-C. Tsai, C.-S. Chen, A. A. Amelenan Torimtubun, A. Velusamy, P.-Y. Huang, G.-H. Lee, S.-L. Yau, S.-H. Tung, T. Minari, C.-L. Liu , Ming-Chou Chen. “Quinoidal thioalkyl-substituted bithiophene small molecule semiconductors for n-type organic field effect transistors.”J. Mater. Chem. C 2020, 8, 15450--15458 (CTI: 6)
  16. A. Velusamy, C.-H. Yu, S. N. Afraj, C.-C. Lin, W.-Y. Lo, C.-. Yeh, Y.-W. Wu, H.-C. Hsieh, J. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, Ming-Chou Chen, A. Facchetti “Thienoisoindigo (TII)-Based Quinoidal Small Molecules for High-Performance n-Type Organic Field Effect Transistors.”Advanced Science 2020, 2002930 (CTI: 13)
  17. C.-C. Lin, S. N. Afraj, A. Velusamy, P.-C. Yu, C.-H. Cho, J. Chen, Y.-H. Li, G.-H. Lee, S.-H. Tung, C.-L. Liu, Ming-Chou Chen, A. Facchetti “A Solution Processable 3,5 Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and its Blends for High Performance p-type Organic Field Effect Transistors.”ACS Nano 2020, 15 727 (CTI: 9)
  18. S. N. Afraj, G.-Y. He, C.-Y,. Lin, A. Velusamy, C.-Y. Huang, S. Vegiraju, P.-Y. Huang, J.-S. Ni, S.-L. Yau, S.-H. Tung, T. Minari, C.-L. Liu, Ming-Chou Chen “Solution-processable multi-fused thiophene small molecules and conjugated polymer semiconducting blend for organic field effect transistor application.”Advanced Materials Technologies 2021, 2001028 (CTI: 8)
  19. V. Joseph, A. A. Sutanto, C. Igci, O. A. Syzgantseva, V Jankauskas, K. Rakstys, V. I.E. Queloz, H. Kanda, P.-Y Huang, J-S. Ni, S. Kinge, Ming-Chou Chen, M. K. Nazeeruddin “Stable Perovskite Solar Cells Using Molecularly Engineered Functionalized Oligothiophenes as Low-cost Hole-transporting Materials.”Small 2021, 2100783 (CTI: 9)
  20. A. A. Sutanto, V. Joseph, C. Igci,  O.A. Syzgantseva, M. A. Syzgantseva, V. Jankauskas, K. Rakstys, V. I.E. Queloz, P.-Y. Huang, J.-S. Ni, S. Kinge, A. M. Asiri, Ming-Chou Chen, M. K. Nazeeruddin “Isomeric carbazole-based hole-transporting materials: Role of linkage position on the photovoltaic performance of perovskite solar cells.”Chem. Mater. 2021, 33, 3286 (CTI: 12)
  21. P.-S. Lin, Y. Shoji, S. N. Afraj, M. Ueda, C.-H. Lin, S. Inagaki, T. Endo, S.-H. Tung, Ming-Chou Chen, C.-L. Liu, T. Higashihara “Controlled Synthesis of Poly[(3-alkylthio)thiophene]s and Their Application to Organic Field-Effect Transistors.”ACS Applied Materials & Interfaces 2021, 13, 31898 (CTI: 9)
  22. A. Velusamy, Y.-C. Yang, C.-C. Lin, S. N. Afraj, K. Jiang, P.-S. Chen, S.-L. Yau, I. Osaka, S.-H. Tung, Ming-Chou Chen, C.-L. Liu “Solution Processable Pentafluorophenyl End-Capped Dithienothiophene Organic Semiconductors for Hole-Transporting Organic Field Effect Transistors.”Adv. Electron. Mater. 2021, 2100648 (CTI: 1)
  23. T.-W. Chen, S. N. Afraj, S.-H. Hong, L.-H Chou, A. Velusamy, C.-Y. Chen, Y. Ezhumalai, S.-H. Yang, I. Osaka, X.-F. Wang, Ming-Chou Chen, C.-L. Liu “Synergetic Effect on Enhanced Photovoltaic Performance of Spray- Coated Perovskite Solar Cells Enabled by Additive Doping and Antisolvent Additive Spraying Treatment.”ACS Appl. Energy Mater. 2022, 5, 4149. (I.F. ~6; CTI: 2)
  24. C.-C. Lin, A. Velusamy, S.-H. Tung, I. Osaka, Ming-Chou Chen, C.-L. Liu “Tunable Photoelectric Properties of N-type Semiconducting Polymer:Small Molecule Blends for Red Light Sensing Phototransistors.”Adv. Opt. Mater. 2022, 10, 2102650. (I.F. ~9.926; CTI: 1)
  25. S. N. Afraj, C.-C. Lin, A. Velusamy, C.-H. Cho, H.-Y. Liu, J. Chen, G.-H. Lee, J.-C. Fu, J.-S. Ni, S.-H. Tung, S. Yau, C.-L. Liu, Ming-Chou Chen, A. Facchetti “Heteroalkyl-Substitution in Molecular Organic Semiconductors. Chalcogen Effect on Crystallography, Conformational Lock and Charge Transport.”Adv. Funct. Mater. 2022, 32, 2200880. (CTI: 6)
  26. V. Joseph, J. Xia, A. A. Sutanto, V. Jankauskas, C. Momblona, B. Ding, K. Rakstys, R. Balasaravanan, C.-H. Pan, J.-S. Ni, S.-L. Yau, M. Sohail, Ming-Chou Chen, P. J. Dyson, M. K. Nazeeruddin “Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells.”ACS Applied Materials & Interfaces 2022, 14, 22053. (CTI: 1)
  27. S. N. Afraj, A. Velusamy, C.-Y. Chen, J.-S. Ni, Y. Ezhumalai, C.-H. Pan, K.-Y. Chen, S.-L. Yau, C.-L. Liu, C.-H. Chiang, C.-G. Wu, Ming-Chou Chen”Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells.”J. Mater. Chem. A 2022, 10, 11254. (CTI: 2)
  28. S.N. Afraj, D. Zheng,  A. Velusamy, W. Ke, S. Cuthriell, X. Zhang, Y. Chen, C. Lin, J.-S. Ni, M. R. Wasielewski, W. Huang, J. Yu, C.-H. Pan, R. D. Schaller, Ming-Chou Chen, M. G. Kanatzidis, A. Facchetti, T. J. Marks ”2,3-Diphenylthieno[3,4‑b]pyrazines as Hole-Transporting Materials for Stable, High-Performance Perovskite Solar Cells.”ACS Energy Lett. 2022, 7, 2118. (CTI: 3)
  29. S. N. Afraj, M.-H. Lin, C.-Y. Wu, A. Velusamy, P.-Y. Huang, T.-Y. Peng, J.-C. Fu, S.-H. Tung, Ming-Chou Chen, C.-L. Liu “Solution processable dithioalkylated methylidenyl cyclopentadithiophene based quinoidal small molecules for n-type organic field-effect transistors.”J. Mater. Chem. C 2022, 10, 14496. (CTI: 0)